A General Iterative Algorithm with Strongly Positive Operators for Strict Pseudo-Contractions

نویسندگان

  • Wei Xu
  • Claudia Timofte
چکیده

and Applied Analysis 3 Lemma 7 (see [15]). LetC be a nonempty closed convex subset of a real Hilbert space H. Let T : C 󳨃→ C be a k-strict pseudo-contractive mapping. Let γ and δ be two nonnegative real numbers such that (γ + δ)k ≤ γ; then 󵄩󵄩󵄩γ (x − y) + δ (Tx − Ty) 󵄩󵄩󵄩 ≤ (γ + δ) 󵄩󵄩󵄩x − y 󵄩󵄩󵄩 , ∀x, y ∈ C. (21) Lemma 8 (see [16]). Let H be a Hilbert space and C a nonempty convex subset of H. Let T : C 󳨃→ H be a k-strict pseudo-contractive mapping. Define a mapping Jx = δx+ (1− δ)Tx for all x ∈ C. Then as δ ∈ [k, 1), J is a nonexpansive mapping such that F(J) = F(T). Lemma9 (see [17]). Let {α n } be a sequence of nonnegative real numbers satisfying the following relation:α n+1 ≤ (1−γ n )α n +δ n , where (i) {γ n } ⊂ (0, 1),∑∞ n=1 γ n = ∞; (ii) lim sup n→∞ (δ n /γ n ) = 0 or ∑∞ n=1 |δ n | < ∞; then lim n→∞ α n = 0. 3. Main Results In this section, we prove the strong convergence results on the iterative algorithm for k-strict pseudo-contractions. Theorem 10. Let C be a nonempty closed convex subset of a real Hilbert space H, S : C 󳨃→ H a non-self-L-Lipschitzian mapping, and T : C 󳨃→ C a k-strict pseudo-contractive mapping such that Fix(T) ̸ = 0. Let F : C 󳨃→ H be a tLipschitzian and η-strongly monotone mapping and A : C 󳨃→ C a γ-strongly positive bounded linear operator. For a given x 0 ∈ C, let the sequences {x n } and {y n } generated by (11), where {α n }, {γ n }, {δ n } ∈ [0, 1], satisfy the following conditions: (i) [1−μ(η−μt2/2)]((1+k)/(1−k)) ≤ 1,μ(η−μt/2)−τL > 0, γ ∈ (1, 2); (ii) lim n→∞ γ n = 0, lim n→∞ δ n = 0, ∑∞ n=0 γ n = ∞, ∑∞ n=0 δ n = ∞, (γ n + δ n )k ≤ γ n ; (iii) lim n→∞ (α n /(γ n + δ n )) = 0, ∑∞ n=1 |α n − α n−1 | < ∞, ∑ ∞ n=1 |γ n − γ n−1 | < ∞, ∑∞ n=1 |δ n − δ n−1 | < ∞. Then the sequence {x n } converges strongly to a fixed point x∗ of T, which solves the variational inequality ⟨(I − A) x ∗ , z − x ∗ ⟩ ≤ 0, ∀z ∈ Fix (T) . (22) Proof. The proof is divided into five steps. Step 1. We first show that the sequences {x n }, {y n } are bounded. Take p ∈ Fix(T), own to T : C 󳨃→ C be a k-strict pseudo-contractive mapping, and define Jx = kx+(1−k)Tx. By Lemma 8 J is nonexpansive and Fix(J) = Fix(T); therefore Tx = (1/(1 − k))(Jx − kx): 󵄩󵄩󵄩Txn − Tp 󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩 1 1 − k (Jx n − kx n ) − 1 1 − k (Jp − kp) 󵄩󵄩󵄩󵄩󵄩 = 1 1 − k 󵄩󵄩󵄩(Jxn − Jp) − k (xn − p) 󵄩󵄩󵄩 ≤ 1 + k 1 − k 󵄩󵄩󵄩xn − p 󵄩󵄩󵄩 . (23) Thus we immediately get that T is a (1 + k)/(1 − k)Lipschitzian mapping. Then we estimate ‖y n − p‖: 󵄩󵄩󵄩yn − p 󵄩󵄩󵄩 = 󵄩󵄩󵄩PC [αnτSxn + (I − μαnF)Txn] − PCp 󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩αnτSxn + (I − μαnF)Txn − p 󵄩󵄩󵄩 = 󵄩󵄩󵄩αn (τSxn − μFp) + (I − μαnF)Txn − (I − μα n F)Tp 󵄩󵄩󵄩

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings

In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...

متن کامل

Strong convergence of the modified Mann iterative method for strict pseudo-contractions

In this paper, we introduce amodifiedMann iterative process for approximating a common fixedpoint of a finite family of strict pseudo-contractions inHilbert spaces.We establish the strong convergence theorem of the general iteration scheme under some mild conditions. Our results extend and improve the recent ones announced by many others. © 2008 Elsevier Ltd. All rights reserved.

متن کامل

An intermixed algorithm for strict pseudo-contractions in Hilbert spaces

*Correspondence: [email protected] 2Department of Mathematics and the RINS, Gyeongsang National University, Jinju, 660-701, Korea Full list of author information is available at the end of the article Abstract An intermixed algorithm for two strict pseudo-contractions in Hilbert spaces have been presented. It is shown that the suggested algorithms converge strongly to the fixed points of two str...

متن کامل

Strong Convergence Theorems for Equilibrium Problems and Fixed Point Problems of Strict Pseudo-contraction Mappings

The purpose of this paper is to introduce an iterative scheme for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a k−strict pseudo-contraction non-self mapping in Hilbert space. By the viscosity approximation algorithms, under suitable conditions , some strong convergence theorems for approximating to this common elements are proved. Th...

متن کامل

Iterative methods for k-strict pseudo-contractive mappings in Hilbert spaces

In this paper, we investigate two iterative methods for k-strict pseudocontractive mappings in a real Hilbert space. We prove that the proposed iterative algorithms converge strongly to some fixed point of a strict pseudo-contractive mapping.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014